
1

Automated detection of security sensitive UI
elements for Clickshield

Cristian Di Iorio, 1983177, Sapienza University of Rome

Abstract—Clickshield is a tool aimed at protecting Android apps from clickjacking attacks. However it needs each security sensitive UI
element it protects to be manually tagged. In this paper we will show how to implement an automatic system to detect and tag security
sensitive UI elements in three steps. First we will analyze application code using a code-level analyzer that produces a particular kind
of event graphs; then we will feed those graphs to Graph Neural Networks to detect whether they are security sensitive or not. Finally
we will show how to tag those sensitive elements. This will greatly improve the usability of Clickshield.

Index Terms—UI attack, Clickjacking, Clickshield, UI-CTX, GNN

F

1 INTRODUCTION

Everybody owns a smartphone. In the wide plethora of
possible attacks against them, some focus on the mobile
user-interface (UI). An interesting type is clickjacking, which
happen when attackers create an overlay that completely
covers a security-sensitive app. Thus, while users think
they are interacting with an innocuous overlay, they might
be misled into performing unwanted actions on the app
that is being covered.

To tackle this issue, [8] introduces ClickShield, a defense
mechanism that works better than pre-existing ones like
obscured flag and hide overlays. It works thanks to a novel
image analysis technique, deblending. Clickshield focuses
on the net effect of overlays, to try to interpret what the user
is actually seeing. It manages to detect all malicious cases
present in the ClickBench benchmark while still recognising
the benign ones.

However, Clickshield only protects UI elements that
have been manually flagged by developers as sensitive.

This is a glaring weakness and the authors themselves
commented on the need for an automated tagging system
of sensitive components. In this report we will implement
such a system, using this three step approach:

1) first scan the application (in .apk format) using UI-
CTX [4], a code-based UI analyzer that performs au-
tomated analysis of code to describe the behaviour
of an app’s UI elements through UI Handler Graphs
(UHGs). These graphs model in a compact way the
core intentions of a UI widget and they are a more
detailed representation than raw code.

2) use Graph Neural Networks to solve a graph-
level binary classification problem that assigns to
each UHG a label indicating whether it is security-
sensitive or not,

3) tag the UI elements that have a sensitive UHG so
that Clickshield can protect them.

Manuscript delivered on June 29th 2025

All three steps are performed beforehand on a computer.
At the end of the process we just described, we will be
left with an application that hopefully has all its security
sensitive elements tagged, so that Clickshield can recognise
and protect them.

While GNNs have already been used in cybersecurity
to analyze code graphs [9] [7], the core innovation brought
by this report is combining them with UHGs, which are
more specific, event-centered graphs that represent the code
triggered by a UI widget.

The main focus in existing research has been to study
functions on their own [9] while UHGs depict the whole
chain of function calls linked to a single UI element. To
the best of our knowledge, this three step approach to
automated detection and tagging of sensitive UI elements
has never been tried before.

2 BACKGROUND

2.1 Clickjacking

A clickjacking attack is a UI attack where the attacker
creates an opaque overlay that covers an app. While
the user believes the overlay is benign, what’s actually
happening is that it tries to deceive the user into interacting
with UI elements of the app that’s being covered. It’s easy to
see that if the overlay covers something sensitive, the user
could be misled into performing unwanted and dangerous
actions like installing an arbitrary app or disabling security
checks.

The security mechanisms implemented by Google,
namely obscured flag and hide overlays, are either too
simplicistic or too excessive.

The former works by tagging sensitive UI elements
manually, then at runtime the mechanism can detect if they
are covered by an overlay when clicked; however it has
been proved to be ineffective for some attacks like Cloak
& Dagger [3].



2

The latter works by removing all overlays; this is obvi-
ously a crude approach that creates backwards compatibility
issues with some apps, especially ones whose core function
is to create full screen overlays like screen filter apps [8].

2.2 Clickshield
Clickshield [8] is a defensive mechanism that offers
protection from clickjacking attacks. To do so, it employs a
novel image analysis technique, deblending. This technique
involves using the raw pixel data of the display the user is
seeing and the display without any overlays; those values
are used to compute an opaqueness value and a uniformity
score for the overlay layer. By checking those scores against
a threshold, it can decide whether to accept an overlay or
not. The only case in which an overlay is accepted is if it’s
semi-transparent and uniform.

This process is only executed when the user interacts
with developer-flagged UI elements which are sensitive.
The need for manual tagging of UI elements is an obvious
Achilles’ heel for this system, as stated by the authors.

2.3 UI-CTX
UI-CTX [4] is a static, code-based analysis framework
designed to represent the true intentions of a UI widget
(i.e. an UI element) of an Android app by linking the
visible interface to the exact parts of code it triggers. It
provides better accuracy compared to appearance-based
and permission-based analyzers. It works in three phases:

First, it performs Multi-Layer Knowledge Extraction,
meaning it parses the code to gather all informations
relative to the UI layer. Then it performs static code
analysis, such as inter and intra process control flow and
data flow, to find each UI widget’s real callback code. It
does so by tracing backwards from event-registration calls
to the exact sites (findViewById and setContentView)
that link a UI element to its handler. Then branches that the
widget can’t participate in are pruned.

The second phase consists of UHG construction, when
a UI Handler Graph (UHG) is built for each widget-event
pair, where nodes are individual function calls and edges
are their invocation relationships; it’s important to note that
node features contain the implementation of each function
at the Dalvik-opcode level, instead of a simple name. Also,
external libraries are summarized to make the graph more
concise.

Finally, in the Behavior Investigation phase, it embeds
each UHG into a fixed-length vector. Then these vectors can
be used for further analysis. For example the authors use
Agglomerative Hierarchical Clustering Analysis, an unsu-
pervised algorithm that recursively merges and splits clus-
ters based on distance. The end result is that vectors (and
the relative UI elements that they represent) are clustered
together based on functionality.

Fig. 1. Source: [4]

2.4 Graph Neural Networks
A Graph Neural Network [10] is basically a neural network
that has been adapted to work on graph-structured data to
perform normal machine learning tasks, like classification,
regression or clustering [7].

The idea is that nodes of a graph are objects and edges
are their relationships. Each node has an attached vector,
its state, which is used by the two powerful components of
GNN, the aggregate and update functions. Over several
iterations, each node’s state is iteratively updated by receiv-
ing information from its neighborhood and aggregating it.
Then the output is produced using an output function. They
can be used for different tasks of: node-level classification,
edge-level classification and graph-level classification.

Fig. 2. Source: [7]

There are different GNN frameworks, where the main
difference comes from the choice of the aggregate and
update functions. Here are some of them:

• Graph Convolutional Networks (GCN), which use
the convolution function on a graph’s data to per-
form semi-supervised classification tasks. They pro-
vide a simple approach, however it comes at the cost
of high computational overhead [7].

• Gated Graph Recurrent Networks (GGNN), which
diverge from GNN for the use of Gated Recurrent
Units, which remove the need to constrain param-
eters to ensure convergence [5]. They allow for a
deeper analysis of graphs than GCN [12].

3 OVERVIEW OF YOUR PROPOSED APPROACH

Clickshield protects apps from clickjacking attacks. How-
ever, as we already mentioned before, Clickshield relies
on developers manually recognising and tagging security
sensitive UI elements. It’s obviously impossible to do this
manual analysis for all existing applications. So we propose
an automated system that, starting from an app’s .apk file,
recognises and tags sensitive UI elements. To better explain
our approach we will be following the steps of the pipeline
described in the introduction.



3

3.1 Step 1: UI-CTX
We will use UI-CTX to study the behaviour of an
application’s components. It’s the best choice for code-
level analysis of UI widgets because it’s resistant to code
obfuscation techniques as it does not rely on class or method
names to represent semantic information of function calls
like some of the alternatives do [4].

At the end of the analysis, which works just like we
described before, we are left with UHGs, which are the
core representation of a single widget’s behaviour for one
event. So for each widget event there is a UI handler graph
where the widget is connected to an event handler followed
by the code contexts that are reachable by the widget,
where each method call is represented as a node and
the function it executes is represented as a feature. Then,
UI-CTX also iteratively aggregates the semantic information
of downstream graph nodes for each API call in widget
code contexts, in an effort to summarise information and
reduce the graph’s complexity.

Then a lightweight graph embedding approach is used,
which is efficient and retains sufficient code context. This
decision is motivated by the fact that the task performed
in UI-CTX is a broad clustering task of UI widgets based
on behavior using HCA, which produces good results and
even separates widgets of the same category based on how
they work:

Fig. 3. Source: [4]

Here is where our approach differs from the one de-
scribed in UI-CTX. In that paper the authors perform a task
that is not specific, which is why HCA, an unsupervised
ML technique, is used. Instead of HCA, we propose using
supervised techniques such as Graph Neural Networks for
our specialised use case.

3.2 Step 2: Graph Neural Networks
In the words of the authors of UI-CTX themselves: ”We
can expect that if a high-quality labeled dataset for a specific
task is available, leveraging learning models that are powerful in
distilling correlations between data and their labels could lead to
better performance on specific analysis tasks.” [4]

This is a perfect fit for our approach, since we have a
specific analysis task, which is finding security sensitive UI
widgets starting from their UHGs.

In other research, different kinds of graphs are used,
such as control flow graphs, data flow graphs and abstract

syntax trees [12]. Other research focused on combining
those together [9], which are somewhat similar to UHGs,
being a sort of custom graph. However in that paper
Convolutional Neural Networks adapted for graphs were
used, motivated by the fact that GNN need higher-level
semantic information to work.

We suggest using GNN in our scenario because in our
case we do have higher-level semantic information thanks
to UHGs. Thanks to API summarization performed by
UI-CTX and thanks to the use of Dalvik opcodes in UHGs,
we have a precise semantic representation of operations
performed by functions, which is more meaningful than
simple method names.

As for the kind of GNN we are going to use, like we
explained in chapter 2.4 there are multiple kinds. Our task
is a binary graph-level classification [7]. For our use case
we suggest using a Deep Graph Convolutional network,
like in [13] or a Gated Graph Recurrent Network similar
to [12]. Of course both would need to be adapted to our
use case. The choice between models would largely be
influenced by performance, computing power and dataset
size. In particular, a deep graph convolutional network
would require a significantly large labeled dataset of UHGs
and it would also require considerable computing resources.
Instead a Gated Graph Recurrent Network inspired by [12],
would need a smaller labeled dataset and it would use less
resources, due to having less layers than a DGCN. It may be
better to prioritize a Gated Graph Recurrent Network based
implementation, because as it will be explained in chapter
4, we will need to create the labeled dataset ourselves and
that implementation needs less labeled data.

3.3 Step 3: Tagging
Step two labels UHGs as either security sensitive or not.
So it is easy to create a list containing the widget IDs of
security sensitive UI elements by looking at their UHGs.

Now we need to tag them in the code so that they can be
recognized and protected by Clickshield. Existing Android
defenses [1] rely on setting View attributes in the Java app
code:

View.setFilterTouchesWhenObscured(true)

or in the .xml layout file:

android:filterTouchesWhenObscured="true"

We could use a similar approach by creating a new XML
attribute, for example:

app:clickShieldProtected="true"

4 EVALUATION

Graph Neural Networks need a labeled dataset to work,
which means that we need to build a labeled dataset of
UHGs that are security sensitive and some that are not. We
suggest using as a starting point the dataset [11] produced
by the authors of the paper, who scanned more around forty
thousand apps from different market sources. Obviously



4

we will need to exclude some samples.

To have a rough estimate of how large our labeled
dataset should be, we note that in UI-CTX, the authors
report that the average UHG has around 1367 nodes and
11444 edges. This is just a bit bigger than the size of the
graphs in the D&D dataset used in [13], which means
that they are somewhat comparable. That dataset contains
1178 graphs of which 691 are enzymes and the rest are
non-enzymes.

This means that at the very least to create our labeled
dataset of UHGs we would need to manually label a
minimum of 1000 UHGs as either security sensitive or not.
The dataset also needs to be balanced, to avoid unwanted
bias towards the eventual majority.

After building the dataset, the main metrics to evaluate
the performance of our GNN should be:

• Receiver Operating Characteristic (ROC) with Area
Under ROC (AUROC); the ROC curve plots the true
positive rate against the false positive rate for each
threshold.

• Precision-Recall (PR) curve with Area Under PR
(AUPR); the PR curve plots precision against recall
at each threshold.

We chose those since they are the most representative
for our graph-level binary-classification task. We can also
use precision and F1 score as secondary metrics.

As for computing performance, due to our use of com-
plex GNNs and large datasets we will probably need a
powerful computer like the one used in [4].

5 RELATED WORK

Computer vision represents an interesting alternative to
Clickshield for clickjacking protection. Some research has
already been carried on detecting dark patterns (deceptive
UI designs) in mobile applications using a combination
of computer vision and natural language processing
techniques [6] [2]. However this work is only partially
related to clickjacking and there is no certainty that it might
be applicable to our scenario.

We have already cited some papers that employ more
classical graphs (data-flow, control flow) compared to the
UHGs produced by UI-CTX. However we chose to use the
UHG representation since they are event-driven so they are
a perfect fit for our use case. However UI-CTX is not perfect
by any means, because it may not accurately capture widget
functionalities if the application code is encrypted [4].

Some alternatives to our Graph Neural Network based
approach are Convolutional Neural Networks adapted to
graphs, like the one used by [9] but we have already
explained in chapter 3 why we think our approach is better.

6 CONCLUSIONS

In this report we have shown that, by feeding to a GNN
the graphs produced by code-level analysis of an app
(UI-CTX), we can automatically detect security sensitive
UI elements of an Android application. This is needed to
enhance Clickshield [8], since it relies on manual detection
of sensitive UI elements.

Future efforts should focus on implementing the pro-
posed system and creating the labeled dataset described
in chapter 4. Other research should also be focused on
improving and updating Clickshield itself.

REFERENCES

[1] Android Developers, “Tapjacking,”
https://developer.android.com/privacy-and-
security/risks/tapjacking, Google LLC, Sep. 2024, accessed:
2025-06-12.

[2] J. Chen, J. Sun, S. Feng, Z. Xing, Q. Lu, X. Xu, and C. Chen,
“Unveiling the tricks: Automated detection of dark patterns in
mobile applications,” in Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’23.
New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3586183.3606783

[3] Y. Fratantonio, C. Qian, P. Chung, and W. Lee, “Cloak and
dagger: From two permissions to complete control of the
ui feedback loop,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2017, pp. 1041–1057. [Online].
Available: https://www.blackhat.com/docs/us-17/thursday/us-
17-Fratantonio-Cloak-And-Dagger-From-Two-Permissions-To-
Complete-Control-Of-The-UI-Feedback-Loop-wp.pdf

[4] J. Li, J. Liu, J. Mao, J. Zeng, and Z. Liang, “Ui-ctx:
Understanding ui behaviors with code contexts for mobile
applications,” in Network and Distributed System Security
(NDSS) Symposium 2025, February 2025. [Online]. Available:
https://dx.doi.org/10.14722/ndss.2025.240238

[5] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated
graph sequence neural networks,” 2017. [Online]. Available:
https://arxiv.org/abs/1511.05493

[6] S. M. H. Mansur, S. Salma, D. Awofisayo, and K. Moran, “Aidui:
Toward automated recognition of dark patterns in user interfaces,”
in Proceedings of the 45th International Conference on Software
Engineering, ser. ICSE ’23. IEEE Press, 2023, p. 19581970. [Online].
Available: https://doi.org/10.1109/ICSE48619.2023.00166

[7] S. Mitra, T. Chakraborty, S. Neupane, A. Piplai, and S. Mittal, “Use
of graph neural networks in aiding defensive cyber operations,”
2024. [Online]. Available: https://arxiv.org/abs/2401.05680

[8] A. Possemato, A. Lanzi, S. P. H. Chung, W. Lee, and
Y. Fratantonio, “Clickshield: Are you hiding something? towards
eradicating clickjacking on android,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 11201136. [Online]. Available:
https://doi.org/10.1145/3243734.3243785

[9] A. S. Saimbhi, “Enhancing software vulnerability de-
tection using code property graphs and convolutional
neural networks,” in 2025 International Conference on
Computational, Communication and Information Technology
(ICCCIT). IEEE, Feb. 2025, p. 435440. [Online]. Available:
http://dx.doi.org/10.1109/ICCCIT62592.2025.10928033

[10] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE Transactions on
Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.

[11] UICTX, “Uictx demo data,” 12 2024. [Online]. Available:
https://figshare.com/articles/dataset/UICTX Demo Data/27266934

[12] Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program
semantics via graph neural networks,” CoRR, vol. abs/1909.03496,
2019. [Online]. Available: http://arxiv.org/abs/1909.03496

[13] Y. Zhou, H. Huo, Z. Hou, and F. Bu, “A deep graph convolutional
neural network architecture for graph classification,” PLOS
ONE, vol. 18, no. 3, pp. 1–31, 03 2023. [Online]. Available:
https://doi.org/10.1371/journal.pone.0279604


