
Department of Computer Science

AWS Blog App
Cloud Computing

Professors:

Emiliano Casalicchio

Students:

Soykat Amin,

1985500

Cristian Di Iorio,

1983177

Academic Year 2024/2025

Contents

1 Introduction 2

2 Design and Architecture 4

2.1 Application Architecture . 4

2.1.1 Web Tier (Presentation Layer) 4

2.1.2 Application Tier (Logic Layer) 5

2.1.3 Data Tier (Database Layer) . 5

2.2 AWS Services Used . 6

3 Implementation 8

3.1 Setting Up the Network and Security 8

3.1.1 Virtual Private Cloud . 8

3.1.2 Security Groups . 8

3.2 Database, Bastion Host and Tester Host 8

3.3 S3 . 8

3.4 Web Application Infrastructure . 9

3.4.1 Auto Scaling Group . 9

3.4.2 Finalizing Scaling Policies . 9

3.5 Addendum on EC2 instance type . 10

4 Performance Evaluation 11

4.1 JMeter Tests . 11

4.1.1 Heavy Test . 12

4.1.2 Light Test . 12

4.2 Heavy Load Test: Performance Evaluation 13

4.2.1 EC2 Metrics . 13

4.2.2 Autoscaling Events and Instance Scaling 14

4.2.3 User-side Metrics . 15

4.3 Performance Testing and Evaluation - Light Test 16

4.3.1 EC2 Metrics . 16

4.3.2 Autoscaling Metrics . 17

4.3.3 User Side Metrics . 18

4.4 Availability Tests . 19

5 Conclusions 20

1

1 Introduction

This project aims to design, deploy, and evaluate a multitier web application on

Amazon Web Services (AWS), using services available within the AWS Academy

Learner Lab environment.

The deployment must span at least two availability zones (AZs) to ensure high

availability and fault tolerance. Additionally, the application must be configured

with an Auto Scaling Group (ASG) that uses step scaling policies, rather than target

tracking, to respond dynamically to changes in demand. The policy will include at

least two scale-out rules and two scale-in rules based on CloudWatch alarms and

performance thresholds.

A critical component of this project is evaluating the performance and scalability

of the deployment under different workload conditions. All activities will be performed

with consideration for the AWS Learner Lab’s service availability and usage restrictions

to prevent overuse or account suspension.

This report documents the system architecture, service selection, scaling policy

configuration, test design, and detailed analysis of results. It provides insights into how

the application performs under load, how well it scales in response to demand, and the

practical trade-offs encountered when working within a constrained cloud environment.

The application is a simple Python Flask blog we created. Users can upload and

see posts with images.

Figure 1: Blog with no posts and Login page

2

Figure 2: Post creation and First post

Figure 3: Post with image

3

2 Design and Architecture

2.1 Application Architecture

Figure 4: Application architecture

The application follows a classic three-tier model—comprising a Web Tier for

traffic routing, an Application Tier for business logic, and a Data Tier for persistent

storage—deployed over multiple Availability Zones to ensure high availability and fault

tolerance.

2.1.1 Web Tier (Presentation Layer)

The Web Tier acts as the public-facing entry point for all user traffic. Its primary

responsibility is to accept incoming HTTP/HTTPS requests from the internet and

distribute them efficiently to the Application Tier. It does not contain any business

4

logic; it is purely a traffic management and distribution layer.

The core component is the Application Load Balancer (ALB). The ALB is deployed

across two public subnets, one in each Availability Zone (AZ), ensuring high availability.

It listens for user requests and forwards them to healthy instances in the Application

Tier. It also performs health checks on the application servers, automatically routing

traffic away from any that become unresponsive.

2.1.2 Application Tier (Logic Layer)

The Application Tier is the engine of the system, responsible for executing the business

logic. It receives requests from the Web Tier, processes them, interacts with the Data

Tier to read or write information, and generates the dynamic content that is sent back

to the user.

The Application Tier consists of Amazon EC2 instances within an Auto Scaling

Group (ASG). The EC2 instances are deployed in private subnets across two Availability

Zones. This measure prevents them from being directly accessed from the internet.

They can only receive traffic from the trusted Load Balancer. The Auto Scaling

Group manages the fleet of EC2 instances, automatically increasing the number of

servers during periods of high demand (scaling out) and decreasing the number during

quiet periods (scaling in). Outbound internet access for software updates is provided

securely via a NAT Gateway.

To securely administer the EC2 instances in the Application Tier, a bastion host

was deployed in a public subnet. The bastion host acts as a jump server, allowing SSH

access only from a trusted IP range while the application servers themselves remain

in private subnets with no direct exposure to the internet. This setup adheres to the

principle of least privilege and minimizes the attack surface, ensuring secure access for

maintenance or debugging purposes without compromising the isolation of the private

infrastructure.

2.1.3 Data Tier (Database Layer)

The Data Tier is responsible for the persistent storage and retrieval of application data.

It is designed for high availability and data durability, ensuring that information is

not lost in the event of a component failure.

The core components are Amazon Relational Database Service (RDS) for PostgreSQL

and Amazon S3.

5

The RDS instance is deployed in a Multi-AZ configuration. This means a primary

database instance is actively serving requests in one AZ, while a synchronous standby

replica is maintained in a second AZ. All data is replicated in real-time between the

two. If the primary instance fails, Amazon RDS automatically fails over to the standby

replica with no data loss and minimal downtime. The database resides in private

subnets and is protected by a dedicated security group that only allows connections

from the instances in the Application Tier, ensuring the data is isolated and secure.

Amazon S3 (Object Storage): Provides virtually unlimited, highly durable object

storage for unstructured data. In this architecture, an S3 bucket is used to host

user-uploaded images. A VPC Gateway Endpoint enables secure, private connectivity

from the EC2 instances in the Application Tier (without traversing the public Internet)

and bucket policies grant least-privilege access so that only the application’s IAM role

can read from or write to the bucket.

2.2 AWS Services Used

To construct this scalable and highly available architecture, the following key AWS

services were utilized:

• Amazon VPC (Virtual Private Cloud): Provided the foundational network

isolation for the entire deployment. A custom VPC was configured with public

and private subnets across two Availability Zones, along with route tables,

an Internet Gateway for public traffic, and a NAT Gateway to allow private

instances outbound access.

• Amazon EC2 (Elastic Compute Cloud): Provided the virtual servers (instances)

that run the web application code in the Application Tier. We used t3.micro

instances to stay within budget while providing sufficient compute for the workload.

• Application Load Balancer (ALB): Served as the single point of contact for

clients. It distributed incoming application traffic across multiple EC2 instances

in multiple AZs, increasing the fault tolerance and scalability of the application.

• Auto Scaling Group (ASG): Automated the process of scaling the Application

Tier. It was configured to maintain a minimum number of running EC2 instances

and to automatically launch or terminate instances based on a set of defined Step

Scaling policies.

• Launch Template: Served as a blueprint for the EC2 instances launched by the

Auto Scaling Group. It specified the Amazon Machine Image (AMI), instance

type, security groups, and a user data script to bootstrap the instances with the

necessary software upon launch.

6

• Amazon RDS (Relational Database Service): Provided a fully managed,

Multi-AZ PostgreSQL database. Using RDS offloaded administrative tasks such

as patching, backups, and failover management, allowing the focus to remain on

the application.

• Amazon S3 (Simple Storage Service): Provided highly durable, scalable

object storage for static assets and backups. In this architecture, S3 is used to

host static website content (images).

• Amazon CloudWatch: Acted as the monitoring and observability service. It

was used to collect performance metrics (specifically CPUUtilization) from the

EC2 instances. CloudWatch Alarms were configured to watch these metrics and

trigger the Step Scaling policies when specific thresholds were breached.

• AWS Security Groups: Acted as a stateful virtual firewall for the instances

and database. They were configured to enforce the principle of least privilege,

ensuring that the ALB could only talk to the web servers on port 80, and the

web servers could only talk to the database on port 3306.

7

3 Implementation

3.1 Setting Up the Network and Security

First, we created a secure and isolated network environment for the application.

3.1.1 Virtual Private Cloud

We created a Virtual Private Cloud (VPC) in 2 Availability Zones (AZ) with 2 Public

Subnets and 2 Private Subnets. We also placed a NAT gateway in 1 AZ.

3.1.2 Security Groups

We defined five SGs to enforce least-privilege access.

Security Group Inbound Rule Source Purpose

tester-sg SSH (22) My IP Admin access to tester host

bastion-sg SSH (22) My IP Admin access to bastion host

alb-sg HTTP (80) 0.0.0.0/0 Public web access to ALB

web-sg
HTTP (80) alb-sg Web traffic from ALB

SSH (22) bastion-sg Admin SSH from bastion host

db-sg PostgreSQL (5432) web-sg DB access from web tier

3.2 Database, Bastion Host and Tester Host

Then from the RDS console we deployed a PostgreSQL database on a db.t3.micro

instance. We made it available in both Availability Zones for maximum reliability.

We launched another EC2 instance, the Bastion-Host, which we will use as an

SSH gateway. Since it does not require that many resources, we will host it on a

t3.micro instance.

The last EC2 instance we manually launch is Tester-host, which we will use to

carry out our performance tests later. Due to performance concerns we will explain

later, this instance will need to be a t3.small one.

3.3 S3

An Amazon S3 bucket was provisioned via the AWS Management Console for storing

user-uploaded images. Then in the instance template we added the IAM instance role

”LabInstanceProfile”.

8

3.4 Web Application Infrastructure

Now we need to set up the web tier, load balancer, and auto scaling.

First we created our EC2 Launch Template, which is a t3.micro EC2 instance

running Amazon Linux 2. We will assign this to the web-sg security group. The

User Data section is crucial, as it automates the instance initialization by pulling

application code from GitHub and configuring the runtime environment. Then it

creates a system service and runs our web application using Gunicorn.

Next we created a Target Group for our VPC, called project-tg of type Instances

using Protocol/Port: HTTP/80.

Then we set up our internet facing Application Load Balancer; it is present in

both public subnets of our VPC and is assigned to the alb-sg security group. Its role

is to listen to HTTP port 80 and forward it to the project-tg target group we just

created.

3.4.1 Auto Scaling Group

Finally we created an Auto Scaling Group (ASG) in our VPC with our launch template

(project-web-template). This ASG is active in both private subnets of our VPC and

is attached to the project-tg target group. Here we set:

• Desired Instance Number = 2

• Minimum Instance Number = 2

• Maximum Instance Number = 6.

3.4.2 Finalizing Scaling Policies

To complete our setup we added CPU-based step scaling to respond to load. First we

created two CloudWatch Alarms, which will be used by our scaling policies:

• cpu-high-alarm: CPUUtilization of project-asg ≥ 65% for 1 minute.

• cpu-low-alarm: CPUUtilization of project-asg ≤ 30% for 1 minute.

In the Auto-Scaling Group we added these two policies:

1. scale-out: when cpu-high-alarm is true, we:

• add 1 capacity unit when 65 ≤ CPUUtilization < 80

• add 3 capacity units when 80 ≤ CPUUtilization

9

2. scale-in: when cpu-low-alarm is true, we:

• remove 1 capacity unit when 30 ≥ CPUUtilization > 15

• remove 3 capacity units when 15 ≥ CPUUtilization

3.5 Addendum on EC2 instance type

At first we chose the t2.micro EC2 instance type. However after some tests, we could

not guarantee a good level of service while the workload increased. Even while testing

with around 1300 Transactions per second, JMeter detected 0,05% failures and the

CPU always reached maximum usage (around 95%).

To avoid providing a low quality of service, we chose to use the t3.micro instance,

which guarantees better performance and even costs less than t2.micro. The difference

in price varies according to demand, but t2.micro’s cost is usually 0.0116$ per hour

while t3.micro’s is around 0.0104$ per hour.

10

4 Performance Evaluation

4.1 JMeter Tests

To evaluate the performance of our system, we decided to use Apache JMeter tests.

In particular, we used the UltimateThreadGroup plugin for maximum customizability

of tests. All performance tests were executed from an EC2 instance within the same

AWS region to avoid external network interference. JMeter was used to simulate

concurrent user traffic, with a distribution of user roles representative of real-world

usage patterns. Metrics were collected using Amazon CloudWatch and JMeter reports.

Since JMeter has strict resource requirements, we will run them on a t3.small EC2

instance (tester-host). We used JMeter Throughput Controllers to simulate user

behavior:

Sampler Step % of Users

Viewers 70%

Text Posters 20%

Image Posters 10%

Here are the different actions for each category of user:

1. Viewers: HTTP GET to /, it simply visits the homepage.

2. Text Posters: First they login with a HTTP POST to /login. Then they

perform a HTTP POST to /create with a simple string for both title and content.

3. Create Image Post: First they login with a HTTP POST to /login. Then

they perform a HTTP POST to /create. Differently from before, they also have

an image to post.

To ensure that we have a mix of different requests, we used text of different sizes

and images of different sizes. In particular:

• Text Posters: Post a random string, created using the RandomString() function;

this string has random size between 100 and 2000 characters chosen using the

Random(100,2000) function.

• Image Posters: Post an image chosen between the three we supplied: small.jpg,

of size 5KB, medium.jpg, of size 250KB and big.jpg, of size 500KB.

We also employed Constant Throughput Timers for our tests. We created two

different tests: a lighter one and a heavier one. The value of the timer is different

for each case obviously.

11

4.1.1 Heavy Test

The test lasts for 30 minutes and is structured like this:

Threads Delay (∆0) [s] Ramp-Up (R)

[s]

Hold (H) [s] Ramp-Down

(D) [s]

30 0 120 1080 120

30 120 120 1080 120

30 240 120 1080 120

30 360 120 1080 120

30 480 120 1080 120

There are five 30-thread groups start every 120 s; each ramps up over 120 s for the

first 600 s, holds for 1080 s, then ramps down over 120 s.

Here is the expected parallel users count computed by the JMeter GUI:

From Table 1 and the JMeter provided expected user count you can clearly see

that there are distinct phases of Warm-Up, Ramp-Up which last 600 seconds then a

Steady phase of 600 seconds and finally the Ramp-Down phase that lasts 600 seconds

(it’s hard to see from this image but it’s not linear, there are multiple steps). In this

case the constant throughput timer is aimed for 2000 TX/s.

4.1.2 Light Test

The light test uses the same statistics as the heavy test we just described in table 1,

but instead of 30 threads per step it only dispatches 5 threads per step for a total of

25. The constant throughput timer is set to aim for 1000 TX/s.

12

4.2 Heavy Load Test: Performance Evaluation

4.2.1 EC2 Metrics

• CPUUtilization, during the ramp-up phase (the first 600 seconds), CPU utilization

rapidly increases as the number of active users grows. It reaches its peak during

the steady phase. As the load ramps down and terminates (the final 600 seconds),

CPU utilization decreases significantly.

• NetworkIn and NetworkOut, as the number of active users increases during

the ramp-up phase, network traffic (both incoming and outgoing) rises proportionally.

The incoming traffic is mainly made of the images that the users upload.

13

4.2.2 Autoscaling Events and Instance Scaling

As we already said in chapter 3, GroupMinSize is 2 and GroupMaxSize is 6. As you

can see the scale out and scale in policies are employed to respond to the growing

demand.

The activity log shows how all four scaling policies are used: aggressive scale-out,

moderate scale-out and then aggressive scale-in, moderate scale-in at the end of the

test:

There are also other interesting metrics for autoscaling:

• GroupInServiceInstances, the instances rapidly scale out. As the number of

requests drops at the end of the test, the ASG scales in, decreasing the number

of active instances, although the scale-in phase appears slower than the scale-out

phase.

14

• GroupPendingInstances and GroupStandbyInstances are always at 0

• GroupTerminatingInstances, as the load decreases during the ramp-down

phase, the ASG begins to terminate instances that are no longer needed to meet

the demand. The graph shows a peak in terminating instances after the peak

load period, reflecting the ASG’s scale-in activity.

4.2.3 User-side Metrics

Response times, Error Rates and Throughput by request provided by the JMeter

report that is automatically generated at the end of a test:

Label Samples FAIL Err% Avg Min Max Med 90% 95% 99% Tx/s Recv Sent

(ms) (ms) (ms) (ms) (ms) (ms) (ms) (KB/s) (KB/s)

Total 2 696 261 0 0.00 31.1 1 1 082 6.0 9.0 10.0 12.0 1 501 7 913 55 702

GET Homepage 1 887 130 0 0.00 31.9 3 855 8.0 10.0 10.0 14.0 1 051 5 385 388

POST Create Image Post 404 332 0 0.00 31.4 2 1 082 8.0 12.0 14.0 20.0 225 1 264 54 977

POST create Text Post 404 349 0 0.00 27.2 1 825 4.0 6.0 8.0 12.0 225 1 264 344

POST login 150 0 0.00 271.4 112 696 252.5 424.6 512.0 675.1 0.25 1 0.16

POST login-0 150 0 0.00 198.0 109 468 163.0 312.7 378.5 439.4 0.25 0.16 0.07

POST login-1 150 0 0.00 73.2 1 374 41.5 195.9 219.9 356.7 0.25 1 0.09

Table 2: Heavy Test Performance Results

The JMeter report data in this table suggests that the system has excellent error

handling, since there are no errors across 2.6 million requests. The login flow is the

slowest path.

To investigate the login path, we can analyze the Response Times Over Time

table. Here we can see that the POST Login requests exhibit the highest average

15

response time, likely due to the flask-login-based password hashing implemented

for user authentication. This aligns with expectations, as cryptographic operations

are CPU-bound and not easily parallelizable, making them more sensitive to load:

4.3 Performance Testing and Evaluation - Light Test

4.3.1 EC2 Metrics

• CPUUtilization, similar to the heavy test, CPU utilization increases during

the ramp-up phase, reaches a peak during the steady phase, and then decreases

(a bit slower than the scale out) as the load ramps down.

• NetworkIn and NetworkOut, the traffic volumes are significantly lower than

those observed during the heavy test due to the fewer concurrent users:

16

4.3.2 Autoscaling Metrics

The activity log shows that for this test the moderate scale-out rule is used first. Then

the aggressive scale-out rule is used. Then when the Steady phase of the test ends the

scale-in rules are employed by the system:

We also want to analyze the other autoscaling metrics:

• GroupInServiceInstances, the graph shows the ASG scaling out moderately

initially, and then aggressively, in response to the light test load. When the

steady phase ends, the scale-in rules are employed, reducing the number of active

instances.

17

• GroupPendingInstances and GroupStandbyInstances are always at 0

• GroupTerminatingInstances, this graph shows the number of instances being

terminated. This reflects the ASG’s scale-in process after the load has decreased,

showing a peak in terminations during the ramp-down phase:

4.3.3 User Side Metrics

Response times, Error Rates and Throughput by request provided by the JMeter

report that is automatically generated at the end of a test. In this case the number of

transactions per second is halved compared to the heavy test; there are no errors too:

Label Samples FAIL Err% Avg Min Max Med 90% 95% 99% Tx/s Recv Sent

(ms) (ms) (ms) (ms) (ms) (ms) (ms) (KB/s) (KB/s)

Total 1 539 663 0 0.00 9.3 2 1 078 8.0 9.0 10.0 13.0 867 4 570 32 251

GET Homepage 1 077 722 0 0.00 10.1 4 1 065 8.0 9.0 10.0 13.0 607 3 110 224

POST Create Image Post 230 930 0 0.00 9.5 3 1 034 7.0 11.0 12.0 17.0 130 730 31 833

POST create Text Post 230 936 0 0.00 5.6 2 1 078 4.0 5.0 6.0 9.0 130 730 198

POST login 25 0 0.00 170.2 113 260 166.0 238.4 253.7 260.0 0.04 0.26 0.03

POST login-0 25 0 0.00 161.4 110 248 158.0 220.6 241.4 248.0 0.04 0.03 0.01

POST login-1 25 0 0.00 8.6 2 34 4.0 20.2 30.4 34.0 0.04 0.23 0.02

Table 3: Light Test Performance Results

As with the heavy test, we can see that the POST Login requests are computational

hotspots in this case as well:

18

4.4 Availability Tests

To test availability we completed this simple test:

(a) Killed an EC2 instance.

(b) The log shows that a new EC2 instance is launched in response to the killed one.

(c) Finally, on the instances tab a new healthy EC2 instance appears.

19

5 Conclusions

To have a rough estimate of the cost for our system, we used AWS Pricing Calculator

to estimate our costs. Interestingly enough, most of the cost is due to the PostgreSQL

relational database:

Service Name Upfront cost Monthly cost Description

Amazon EC2 0.00 USD 8.22 USD project-web

Amazon RDS for PostgreSQL 0.00 USD 146.66 USD project-db

Amazon Virtual Private Cloud (VPC) 0.00 USD 32.85 USD project-vpc

Amazon EC2 0.00 USD 3.80 USD bastion-host

Elastic Load Balancing 0.00 USD 17.25 USD project-alb

Amazon Simple Storage Service (S3) 0.03 USD 2.30 USD project-s3

Table 4: AWS service costs and descriptions

In summary, the project successfully demonstrated the deployment of a scalable,

fault-tolerant blog application using AWS services. The use of a three-tier architecture

combined with Auto Scaling and multi-AZ deployment ensured both high availability

and dynamic scalability under varying workloads. Performance evaluations confirmed

that the system maintained low error rates and acceptable response times, even under

heavy load. While the PostgreSQL database emerged as the primary cost driver, the

architecture remains cost-effective for educational and small-scale production scenarios.

This project highlights the practical considerations and trade-offs involved in deploying

cloud-native applications within constrained environments.

20

https://calculator.aws/#/

	Introduction
	Design and Architecture
	Application Architecture
	Web Tier (Presentation Layer)
	Application Tier (Logic Layer)
	Data Tier (Database Layer)

	AWS Services Used

	Implementation
	Setting Up the Network and Security
	Virtual Private Cloud
	Security Groups

	Database, Bastion Host and Tester Host
	S3
	Web Application Infrastructure
	Auto Scaling Group
	Finalizing Scaling Policies

	Addendum on EC2 instance type

	Performance Evaluation
	JMeter Tests
	Heavy Test
	Light Test

	Heavy Load Test: Performance Evaluation
	EC2 Metrics
	Autoscaling Events and Instance Scaling
	User-side Metrics

	Performance Testing and Evaluation - Light Test
	EC2 Metrics
	Autoscaling Metrics
	User Side Metrics

	Availability Tests

	Conclusions

