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Chapter 1

Introduction

In this project we want to build a current monitoring system. Monitoring electri-
cal current is crucial in a wide array of applications, from industrial machinery to
household electronics. Precise and real-time current measurement is essential for
ensuring safety, optimizing energy consumption and protecting equipment from over-
loads or faults. However, traditional current monitoring systems can be expensive
and complex.

This project aims to showcase a low-cost, easy-to-build current monitoring sys-
tem using an Arduino microcontroller, a Hall effect current sensor and a Linux
computer. The Hall effect sensor, known for its non-intrusive and accurate current
measurement, offers an efficient alternative to more cumbersome and expensive
methods. By integrating it with an Arduino, we want to provide a solution that can
be easily adapted for various projects. The Linux computer ensures that the user
has an interface to program the Arduino, debug it and view the data that is collected.

Throughout this thesis, our goal is to create a simple and reliable current
monitoring system that anyone can implement. We aim to explain each step in
detail, including both the how and the why behind our actions. Additionally, we
try to demonstrate how fundamental concepts from physics, electronics, and signal
theory influence the design and components of our system.



Chapter 2

Related work

This chapter provides an in-depth review of the scientific literature and key
concepts that form the foundation of this thesis.

2.1 AVR/Arduino

Arduino is an open-source electronics platform known for its versatility in cre-
ating interactive projects. While it is commonly associated with the Arduino IDE
(Integrated Development Environment), the hardware can also be programmed
using AVR, a low-level programming language that provides greater control over the
microcontroller’s functions.

The ATMega 2560 microcontroller is capable of interfacing with various sen-
sors and peripherals, such as current sensors, for real-time monitoring and control.
Programming the ATMega 2560 with AVR allows for direct access to the micro-
controller’s registers and memory, enabling precise and efficient operation, which
is particularly beneficial for applications that require fine-tuned performance and
a deeper understanding of hardware-level programming. In this project we made
ample use of low-level features like interrupts and timers.

2.1.1 Interrupts

An interrupt is a signal sent to the microcontroller that temporarily halts the
execution of the main program. The benefits of using interrupts are efficiency and
responsiveness. They allow the microcontroller to perform other tasks while waiting
for an event rather than checking for it continuously. This also helps lower power
consumption as the microcontroller can be put in a low-power state between events.
The use of interrupts also helps with reducing the response time to events.

When an interrupt occurs, the microcontroller pauses its task, saves its state and
jumps to a special function known as an Interrupt Service Routine (ISR). The ISR is
a short and fast bit of code that is made to address the specific event that triggered
the interrupt. According to the documentation of AVR-GCC [1], the vector table
is preconfigured to link to interrupt routines with specific, predefined names. By
using the correct name for the routine, it will automatically be invoked when the
corresponding interrupt occurs.
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There are different types of interrupts like external, timer and usart. In this
project we used timer and usart interrupts to manage the execution flow of the code.
USART (Universal Synchronous and Asynchronous Receiver-Transmitter) interrupts
are triggered by events like receiving or transmitting data. Timer interrupts depend
on the timer system of the Arduino.

2.1.2 Timers

The Mega2560 has 5 timers [2], which can be used for different purposes, like
recording the exact time an external event happens, timing specific intervals, creating
waveform signals and initiating interrupts at defined time intervals.

A timer has a counter (TCNT), that is incremented at each clock cycle (16 MHz)
or a fraction of it that is a power of 2. Each timer has 3 output compare registers
(OCR) and when the counter value matches the OCR value an event is generated.
An event can result in an interrupt or toggling a pin. The actions taken after an
event occurs are controlled through a set of special registers (TCCR).

2.1.3 ISR

An Interrupt Service Routine (ISR) is a special function that gets executed
when a specific interrupt event occurs. The microcontroller uses an interrupt vector
table to map specific interrupt sources to their corresponding ISRs. Each interrupt
has a unique vector that points to the address of the ISR in memory. When an
interrupt occurs, the microcontroller automatically consults this vector table to find
and execute the correct ISR. It is crucial to ensure that each ISR is defined with the
correct interrupt vector.

When an interrupt event occurs, the microcontroller automatically saves certain
registers (such as the program counter and status register) to the stack. This allows
the ISR to execute without corrupting the state of the main program. After the ISR
finishes execution, these registers are restored and the program resumes from the
exact point where it was stopped. This mechanism allows the microcontroller to
respond quickly to external or internal events without needing to constantly check
for them. In the AVR-Arduino environment, ISRs are defined using a specific syntax:

ISR(TIMER1_COMPA vect) {
//code to handle the interrupt
}

The argument of the ISR is the interrupt vector corresponding to the specific
event that triggers the ISR. Since an ISR halts the main program execution, the
code inside it should be kept as short and efficient as possible to ensure the system
remains responsive. Functions that cause delays or blocking I/O operations should
be avoided within an ISR, as they can lead to unresponsiveness or missed interrupts.
Instead, the ISR should set flags or store data to be processed in the main program
loop, allowing the main code to handle any time-consuming tasks.

2.1.4 Analog to Digital converter

An analog to digital converter (ADC) is an electronic device that converts
continuous analog signals into a discrete digital representation. It is a necessary step
when processing analog signals in digital circuits since those work using only two
discrete states, High (1) and Low (0). This means that since analog signals have an
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infinite number of different values they are not compatible with digital circuits. The
conversion from analog to digital consists of three steps:

1. Sampling, when the analog signal is sampled at regular intervals according to
the sampling rate. The higher the sampling rate, the more accurate the digital
signal will be [3].

Analog Signal Sampled Signal
x(t) y(t)

— Ideal Sampler | | T
t fs > 2W . t
. Ideal Sampler >

»
t fs<2w ——,—» t

2. Quantization, when the ADC replaces each sampled value with the closest
approximated value, which is chosen from a finite set of discrete values. The
most common quantization levels are 8-bit, 16-bit and 24-bit. Using more
levels helps in reducing quantization errors.
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3. Encoding, when the quantized value is converted into a binary number. The

number of bits used in this step depends on the quantization level used by the
ADC.

This kind of converter can be used to make digital circuits interact with the real

word. For example they allow digital computers to measure sound waves, light or
voltages.

2.1.5 Makefile

A Makefile is a special file used by the make utility to automate the process
of building projects. It is useful in large projects because it specifies how to com-
pile and link a program. It defines a set of rules and dependencies that the make
utility uses to determine the correct sequence of operations. These rules typically in-
volve compiling source code files into object files and linking those into an executable.

According to the official documentation [4], each rule consists of:
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e Target: the name of the file that is going to be created.

e Prerequisites: files that are used as input to create the target, like source code
files.

e Recipe: commands to be executed when building the target from the prerequi-
sites.

Here is a sample Makefile:

# Define the compiler to use
CC = gcc

# Define flags for the compiler
CFLAGS = -Wall -g

# Define the target executable
TARGET = myprogram

# List of source files
SRCS = main.c misc.c

# List of object files (replace .c with .o)
0BJS = $(SRCS:.c=.0)

# Default rule to build the target
all: $(TARGET)

# Rule to build the target executable
$ (TARGET) : $(0BJS)
$(CC) $(CFLAGS) -o $(TARGET) $(0BJS)

# Rule to compile .c files into .o files
h.o: h.c
$(CC) $(CFLAGS) -c $< -o $@

# Rule to clean up compiled files
clean:
rm -f $(0BJS) $(TARGET)

# Phony targets (not actual files)
.PHONY: all clean

We used Makefile because it provides automation and portability to the project, as
shown in 3.2.4.

2.1.6 Pseudoterminal Interfaces

In our project we will be using device files, which are created by the kernel to
provide an easy-to-user interface to make serial communication easier.

According to the man page pty(7) [5] a pseudoterminal is a pair of virtual
character devices that provide bidirectional communication between the two ends
of the channel, called the master and slave. The slave side of a pseudoterminal
functions just like a traditional terminal interface. A process that requires a terminal
connection can open the slave side of a pseudoterminal and be controlled by a
program connected to the master side. Any input sent to the master side is received
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by the process on the slave side as if it were typed directly on a terminal.

For instance, sending an interrupt character (like CTRL-C') to the master device
will trigger an interrupt signal (SIGINT) for the foreground process group connected
to the slave. Similarly, any data written to the slave side can be read by the program
connected to the master side. The data flow between the master and slave sides
occurs asynchronously, similar to how data flows with a physical terminal. There
are two pseudoterminal APIs: BSD-style and UNIX 98-style. In this project we will
be using the former.

2.2 Electrical loads

Electrical loads can be categorized based on how the use electrical energy and
how they interact with the power supply. These are the main types:

Resistive loads consume electrical energy mainly in the form of heat. The
relationship between voltage and current is described by Ohm’s law V' = Ri, so
it’s linear. This means that the current waveform follows the voltage waveform,
resulting in a sinusoidal current waveform if the supply is using alternating
current. Some examples are incandescent light bulbs and electric heaters.

Inductive loads involve magnetic fields, which create a phase shift between
voltage and current. So the current lags behind the voltage. The current
waveform is sinusoidal, however there might be some phase lag. Examples of
devices of this kind are electric motors, transformers and fans.

Capacitive loads store energy in an electric field. They cause the current
to lead the voltage, a behaviour opposite to inductive loads. The current
waveform is sinusoidal and it leads the voltage waveform. This type of loads
are not commonly used in standalone devices however they are often found in
circuits for power factor correction.

Non-linear loads draw current in a non-sinusoidal manner, causing the current
waveform to be highly distorted, often with sharp pulses and irregular shapes.
Some examples of devices that use this type of load are computers, phone
chargers and any device that uses switched-mode power supplies.

We avoided testing our sensor with non-linear loads because they produce a
highly distorted current waveform. As shown here:

Fan Current Waveform

Time (s)
Phone Charger Current Waveform

050
3 o025

3 -025

-0.50

Figure 2.1. Comparison between the current waveforms of a fan and phone charger

The current waveform of the fan is sinusoidal with some minor variations, while
the waveform of the phone charger is characterized by high-frequency switching
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pulses. This causes the waveform to be less smooth with irregular pulses.

The nature of this current waveform would have been difficult to capture ac-
curately because of the narrow pulses with high peak current combined with the
overall distortion of the waveform. Due to these concerns, we only tested the current
sensor using resistive and inductive loads, like incandescent light bulbs and fans.

2.3 Current sensor

There are many ways to measure current flowing through a conductor.

The simplest approach is applying Ohm’s law V' = Ri to measure the current by
using the voltage drop across a current-carrying conductor with known resistance
(e.g., a shunt resistor). However as explained in (Crescentini 2021) [6], this configu-
ration lacks galvanic isolation, which means that there is a direct path for current to
flow through. In turn this leads to power loss which can be calculated by subsituting
Ohm’s law in the formula for power P = Vi. The result is a power loss of P = Ri?.
Since it increases with the square of the current, this approach is not compatible
with high-current applications as it would suffer from extreme loss of power.

Magnetic field sensors are a slightly more complex alternative (Ziegler 2009) [7].
They are non-invasive and do not cause heat dissipation. They are also safer as they
provide an inherent electrical isolation between the conductor and the measuring
system. These sensors can be deployed in two configurations:

« open-loop, with a magnetic field sensor placed close to a current carrying
conductor. It is simple and inexpensive, however it requires calibration and it is
susceptible to interference from external magnetic fields. They can be shielded
from those thanks to winding, however they still suffer from magnetic offset,
which determines a constant offset voltage on the output signal, leading to
lowered precision. This kind of sensor also suffers from losses due to hysteresis
and eddy currents.

e closed-loop, which uses the output signal to compensate the magnetization
inside the core of the sensor to avoid thermal drift and lower the constant
offset voltage. This is achieved using a secondary winding, where a current i
passes and it generates a magnetic field that opposes the primary one. This
complex setup makes these sensors more expensive and more complicated to
build. However they don’t suffer losses from eddy currents or hysteresis.

There are many types of magnetic field sensors like Hall Effect sensors, Fluxgate
sensors and Magneto Resistance Effect sensors.

2.3.1 Hall Effect sensors

A Hall Effect magnetic field sensor is a device that measures the magnetic field
generated by a current flowing through a conductor. This effect happens when a
current I flows through a thin sheet of conductive material that is penetrated by a
magnetic flux density B after which a voltage V' is generated perpendicular to both
the current and field. This voltage is proportional to the strength of the magnetic
field and, consequently, to the current passing through the conductor:

I-B

VH:n-q-d
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Where:

Vi . Hall voltage (V)

: Current through the conductor (A)
: Magnetic flux density (T)

. Charge carrier density (m™®)

: Charge of the carrier (C)

: Thickness of the conductor (m)

e 3 I~

These kind of sensors are widely used as they are are simple, cheap and provide
galvanic isolation. They offer great precision in closed-loop configurations, while the
precision in open-loop configurations is good at best.

Fluxgate and Magneto Resistance sensors are more complex and won’t be used
in this project.

2.4 Operational Amplifier

Most hall effect current sensors include an operational amplifier in the circuit.
An operational amplifier is a linear electronic component used in analog circuits [8].

Vs,

Vour

Vs

Figure 2.2. Operational Amplifier

As shown in 2.2, an operational amplifier has 5 terminals:
o V4, non-inverting input
e V_, inverting input
e Vout, output
e Vg, positive power
e Vs_, negative power

An operational amplifier works as a voltage amplifier by amplifying the difference
in voltage between the two inputs V. and V_ thanks to its high gain A. The resulting
amplified signal is then routed on the output terminal, according to:

Vout = A(Vi = V)

It is important to note that the amplified output signal cannot exceed the power
supply voltage, otherwise the output signal starts clipping, which means that it gets
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distorted and cut off. In the configuration of figure 2.2 the amplifier is operating
in open-loop mode, which means that since the gain is high, even a small difference
between the two input voltages can saturate the output. Due to this behaviour,
most of the time an operational amplifier is used in closed-loop mode, like this:

Vin
: Vout

(o]

Figure 2.3. Closed loop operational amplifier

In closed-loop mode the output is either added or subtracted to one of the inputs
through a feedback loop. In the case of figure 2.3, the feedback loop is on the
negative terminal, so the output signal is subtracted to the input signal. This way
the output saturation typical of the open-loop configuration is avoided at the price
of a moderate loss of gain. There are also other benefits to negative feedback, like
reducing the distortion of the signal and widening the bandwidth.

There is another kind of feedback called positive feedback, however it is outside
the scope of this project.

2.4.1 Clipping and saturation

Clipping and saturation occur when the output signal of an operational amplifier
exceeds its supply voltage limits.

Clipping refers to the phenomenon where the output signal is cut off or clipped
because the amplifier cannot provide a voltage beyond its supply rails. This results
in a distorted signal with flattened peaks. Clipping typically occurs when the input
signal is too large for the amplifier’s set gain and supply voltage.

Saturation happens when the operational amplifier reaches its maximum or
minimum output voltage, often near the supply voltage limits. When in saturation,
the amplifier can no longer linearly amplify the input signal, leading to a constant
output near the positive or negative supply rail.

Both clipping and saturation distort the output signal and can lead to significant
performance issues in analog circuits. One way to avoid output signal distortion
due to clipping or saturation is to use the highest possible supply voltage. A higher
supply voltage increases the dynamic range, reducing the likelihood of the output
reaching the supply limits, as illustrated. This provides a larger voltage window for
the output signal.

However, using a higher supply voltage comes with certain trade-offs:

e Power Consumption and Heat Dissipation: as the supply voltage increases,
power consumption rises, given by P = VI. This generates more heat, which
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A

Figure 2.4. Clipping

can affect the performance and lifespan of the operational amplifier.

o Efficiency and Power Supply Design: higher supply voltages require more
robust power supplies, which may reduce the overall system efficiency. This is
particularly important in battery-powered systems, where higher voltages lead
to faster battery depletion.

e Noise and Signal Integrity: increasing the supply voltage can also increase the
noise levels in the system, which may degrade signal integrity. Careful design
is needed to ensure a balance between increased dynamic range and acceptable
noise levels.

e Operational Amplifier Selection: most operational amplifiers have a specified
supply voltage range. Exceeding this range can damage the amplifier or cause
it to behave unpredictably.

e Balancing Headroom and Efficiency: while maximizing the supply voltage helps
prevent clipping, it is not always necessary to use the highest possible voltage.
So it is important to choose a supply voltage that matches the expected signal
range to avoid unnecessary power consumption.

In conclusion, while using a higher supply voltage reduces the risk of clipping and
saturation, it is important to account for the associated power, thermal, and noise
considerations. The choice of supply voltage should balance the need for dynamic
range with overall system efficiency and reliability.
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2.5 Data Interpretation

2.5.1 Nyquist-Shannon Sampling Theorem

The Nyquist-Shannon Sampling theorem (Shannon 1949)[9], is a fundamental
principle in signal processing that helps in deciding how frequently a continuous
signal needs to be sampled in order to reconstruct it digitally in an accurate way.
The theorem states that:

If a function f(t) contains no frequencies higher than W cps, it is com-
pletely determined by giving its ordinates at a series of points spaced 1/2
W seconds apart.

In our project, the Hall effect sensor outputs a voltage signal proportional to the
magnetic field generated by the flowing current. This means that the voltage signal
will vary with time according to the current. According to the Nyquist-Shannon
theorem, to accurately capture all the information in a variable signal without losing
any components, the signal must be sampled at a rate that is at least twice the
highest frequency present in the signal.

Since we need to sample an alternating current signal at 50Hz, a natural inter-
pretation of Nyquist-Shannon’s theorem would suggest that a sampling rate like this
one would be sufficient:

fsamplmg >50Hz x2=100Hz%

However, as explained in this article [10], Nyquist-Shannon’s theorem provides a
fsampling Tate that represents the bare minimum to sample the signal. Therefore
since we want to capture the signal without losing too much information, we need
more that the bare minimum fsqmpiing rate [12].

Before analyzing this signal any further we need to explain what an harmonic of
a wave is. It refers to a sinusoidal wave with a frequency that is a positive integer
multiple of the fundamental frequency of the wave, which in turn represents the
lowest frequency also called the base frequency. In our case harmonics refers to the
unwanted higher frequencies on the fundamental frequency which create a distorted
wave pattern.

Figure 2.5. Power line voltage
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The distortion can clearly be seen in the peaks of the wave. It is clear that the
waveform has important content up to the 5th harmonic at 250 Hz. This means
that due to Nyquist-Shannon’s theorem we need to sample at:

Fsampling > 250H z x 2 = 500H z

Using any sampling rate below 500 Hz will result in a loss of the signal’s components.
Even then, sampling up to the 5th harmonic would be barely adequate. The best
way to avoid loss of information on the signal is to have a 2-times overhead on the
5th harmonic, which can be achieved with a sampling rate of:

fsampling > 500Hz x 2 = 1000H 2z

2.5.2 Root Mean Square

Since the input signal is a sinusoidal wave, we will need to calculate its Root
Mean Square (RMS).

The RMS is a statistical measure of the magnitude of a varying quantity. It is
especially useful in situations where the signal varies over time, such as in alternat-
ing current (AC) signals. The alternating nature of these signals means that the
instantaneous current fluctuates between positive and negative peaks. This means
that the average of these instantaneous current values turns out to be zero, which
obviously does not provide useful information about the signal.

The Root Mean Square value of an alternating current is defined as the direct
current (DC) value that dissipates the same amount of energy in a resistor that is
dissipated by the actual alternating current [11]. It provides useful information on
the signal’s properties. Keeping in mind that Vpk is the peak value of the signal,
the RMS value of a sinusoidal signal is equal to:

RMS = VP

V2

We use the root mean square of the signal because the peak-to-peak value gives
the maximum swing of the signal but doesn’t accurately represent the signal’s average
power or energy. Instead the RMS provides a more accurate representation of the
signal’s overall effect because it reduces the impact of spikes or anomalies, meaning
the analysis of the signal is more reliable. The graph of a sine wave voltage shows
these concepts in action:

a )

0.707a- = = f~ = - = =— -~ """ ----—--------

-a T T T T
0 90 180 270 360
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2.5.3 Least Squares Regression

Regression analysis is a tool for studying the relationship between a dependent
variable and one or more independent variables (Daniya 2020) [13]. This is mainly
done for prediction purposes.

Least squares regression is a statistical method used to find the best-fitting line
or curve through a set of data points. It minimizes the sum of the squared differences
between the observed values (data points) and the predicted values (on the regression
line). By minimizing these squared errors, the regression line is positioned as close
as possible to all the points, providing an estimate of the relationship between
the dependent variable (the outcome) and one or more independent variables (the
predictors). While it is easy to apply and understand, it can also run into some
issues because there are limitations in the shapes that linear models can assume
over long ranges and poor extrapolation [14]. It is also very susceptible to nonlinear
data patterns and outliers.

We used linear least squares regression, which can be used to fit the data of any
function that is in the form:

—,

f(Z; B) = Bo + iz + Paza + ...

The term linear is used, even though the function itself may not be a straight
line, because if we treat the unknown parameters as variables and the explanatory
variables as known coefficients associated with these parameters, the problem be-
comes a system of linear equations that can be solved for the unknown parameters.

2.6 Docker

Docker [15] is an open-source platform that automates the deployment, scaling,
and management of applications using containerization. Containers are standalone
units that package an application along with its dependencies, libraries, and con-
figuration files, ensuring that the application runs consistently across different
environments. Unlike virtual machines, containers share the host system’s oper-
ating system kernel, which makes them more efficient in terms of resource usage
and performance. The main advantage of using Docker is its ability to provide
a consistent and reproducible environment for development, testing and deploy-
ment. Two key tools that are used to ensure this are Dockerfiles and Docker Compose.

A Dockerfile is a simple text file that contains a series of instructions on how to
build a Docker image. It automates the process of assembling an image, which is a
self-contained package that includes everything needed to run an application, such
as the code, runtime, libraries, and environment settings. Dockerfile make it easy to
reproduce the same setup across a wide range of machines.

Docker Compose is a tool for defining, building and running multi-container
Docker applications. It uses a docker-compose.yml file to describe services, networks
and volumes required by the application. It greatly simplifies the process of managing
multiple containers.
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There are several mechanisms to share data between containers. One of these is
shared docker volumes, which are a form of persistent data storage that containers
can read from and write to. The data in shared volumes is obviously independent of
container lifecycles.

2.7 Instruments

The only instruments that we used in this project are a multimeter and an oscil-
loscope. We used the multimeter to check the connections between the components
of the system. We also used its current clamp as a benchmark for the current sensor.
The oscilloscope was used primarily to calibrate the sensor and make sure that it
was not faulty.
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Chapter 3

My Contribution

In this chapter, we describe the system’s components and detail the process of
assembling them.

3.1 Hardware

From a hardware standpoint, the system is composed of three parts. The most
important one is the Arduino ATMega2560, which has a Current Sensor Board
plugged in. The Arduino itself is connected to a Linux machine, which shows the
data. Optionally, the current sensor can be powered by a 9V battery.

3.1.1 System wiring with 5 Volt power supply

The sensor gets power from the 5 Volt pin of the Arduino. The analog signal
coming from the sensor gets sent to port AQO, where it will be read and interpreted.
Only one of the two ground pins provided by the sensor is used. Here is a diagram:

Figure 3.1. 5 Volt configuration
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3.1.2 System wiring with 9 Volt power supply

In this version of the system, the sensor gets power from a 9V battery, which
is grounded to the sensor ground pin. The other ground pin of the sensor is then
connected to the ground pin of the Arduino. The data pin is connected to port AO
like in the 5V version.

Figure 3.2. 9 Volt configuration

3.1.3 Arduino ATMega2560

The central part of the system is the Arduino ATMega2560. The Arduino board
we used has an ATMega 2560 microcontroller and a good number of input/output
pins that gave us a lot of flexibility in this project. We did not use the digital I/O
pins, because analog pins were enough. The integrated Analog to Digital converter
2.1.4, has a 10-bit resolution.

The Arduino is connected through USB to a Linux-based receiver program.
This program can interpret the data that the Arduino sends. The receiver is then
responsible of sending the data to the web interface.

3.1.4 Current Sensor Board

The board contains various components:
e Current Sensor

e Operational Amplifier

o Potentiometer

Here is a simplified diagram of the board:
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Figure 3.3. Diagram

3.1.5 Current sensor

As explained in 2.3 we will be using a Hall effect current sensor. The sensor used
in this project is based on the ZMCT103C current transformer. The sensor itself
is encapsulated with epoxy and according to the specifics [18], it can handle input
currents between 0 and 10 A. It also has a high isolation voltage of 4500V and a low
permissible error, meaning it’s both accurate and safe to use.

3.1.6 Operational Amplifier

The sensor board uses a OP07 operational amplifier [19]. In this case it is being
used to amplify the small voltage output from the ZMCT103C sensor for further
processing by the Arduino board. It has:

« low input offset voltage, at around 75 pV. It is important for maintaining
accuracy when measuring low currents because it helps minimize measurement
erTors.

e low noise performance, to ensure that the signal remains clean.

 high stability, particularly in regards to temperature and long-term drift (1.5
1V /Month).

« wide supply and input voltages, as it supports a voltage range of £3V to +18V
and an input voltage range of +14V.

Like we explained in 2.4.1, operational amplifiers can get saturated. To improve
the accuracy of our readings we also tried powering the sensor with a 9V power
source, as shown in 3.1.2. We measured the current usage of a normal fan to test
whether the accuracy of the system is better when using a 9V power supply over a
5V one, like in 3.1.1:

5V power supply 9V power supply Multimeter Value
32mA OmA OmA
32mA OmA OmA
101mA 150mA 150mA
103mA 150mA 150mA
105mA 152mA 150mA
99mA 150mA 150mA

When comparing these values using a multimeter as reference, it is clear that
the system is way more precise when using a 9V power supply.



3.2 Software 19

3.1.7 Potentiometer

A potentiometer is a resistor with three terminals. The first and second terminals
are connected to the ends of a resistive element and since our potentiometer is
rotating, the third terminal (wiper) is movable. This means that it can be set to
any point on the resistive element, thus changing the resistance between the wiper
and the terminal. This mechanism allows us to control the gain of the operational
amplifier by varying the resistance of the feedback loop. For example in our case
the potentiometer replaces the 2y resistance shown in figure 2.3.

Since the gain of a non inverting operational amplifier is [8]:

Iy
Ay =1
v * Rin
And the gain of an inverting amplifier is:
Ry
Ay = ———
v Rzn

In both cases a potentiometer allows us to change the resistance dynamically.
After some trial and error using an oscilloscope, we settled on a resistance value of
70k<2 for the on-board potentiometer. This value allowed us to maximise the detail
of the wave while also avoiding clipping.

3.2 Software

For the software side of this project, there is a program called meter that runs
on the Arduino and a receiver program called receiver which runs on the Linux host.
The complete repository can be found at [16].

3.2.1 Meter - Arduino side
The program running on the Arduino is responsible for:
1. interfacing with the current sensor,

2. interpreting the raw data coming from the sensor using the analog to digital
converter,

3. sending the correct current reading to the Linux side receiver.

3.2.2 Communication between meter and receiver

The communication between the Arduino and the receiver script hinges on the
device file /dev/ttyUSB0, which serves as a serial interface.

As explained in the course material for Sistemi Operativi[2], everything in Linux
is considered a file, including devices. Device files are located in the /dev directory
and they provide an interface for interacting with hardware devices like hard drives
and keyboards as well as virtual devices like pseudoterminals 2.1.6. Unlike regular
files that are meant to store data, device files represent input/output devices, allow-
ing user programs and the kernel to communicate with hardware through standard
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file operations. This abstraction greatly simplifies the process of handling devices.

The meter and receiver exchange data in a struct called amp_value. Since this
struct is sent in binary form, we need to use the packed attribute to make sure that
the data is always aligned in the same way. This means that it can be easily read by
the meter and the receiver without issues:

typedef struct __attribute__ ((packed)) amp_value {
float current;
uintl6_t timestamp;

} amp_value;

3.2.3 Receiver - Linux side

The main tasks of the receiver program running on the Linux host are:
1. opening an interface to interact with the Arduino,

2. waiting for user input on how to read the data,

3. reading the data sent on this interface.

The receiver needs to notify the user of errors, otherwise both writing code
and using the program can be complicated. For example we check for errors while
opening the file descriptor f£d for the device file:

int serial_open(const char* name) {
int fd = open (name, O_RDWR | O_NOCTTY | O_SYNC );
if (fd < 0) {
printf ("error %d opening serial, fd %d\n", errmno,
fd);
}
return fd;

3

We also notify the user when there is an error while reading the amp_value struct:

amp_value UART_read_amp(int fd) {
int bytes_read = 0;
int total_bytes_read = 0;
amp_value amp = {0, 0};

bytes_read = read(fd, &amp, sizeof (amp_value));

if (bytes_read == sizeof (amp_value)) {
total_bytes_read += bytes_read;
} else {

perror ("read");
printf ("Expected to read %lu bytes, but got %d
bytes\n", sizeof (amp_value), bytes_read);

}

return amp,
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3.2.4 Makefile

The Makefiles in this project are structured in a tree-like way, with a main
Makefile that calls the Makefiles for the receiver and the meter:
.phony: clean all
all:
make -C meter
make -C receiver
clean:

make -C meter clean
make -C receiver clean

In turn, the Makefiles for the meter and the receiver call other Makefiles:

BINS=meter.elf
0BJS=my_uart.o misc.o

HEADERS=my_uart.h

include ../avr_common/avr.mk
CC = gcc
CFLAGS = -Wall -Wextra

receiver: receiver.o misc.o
$(CC) $(CFLAGS) -0 receiver receiver.o misc.o

receiver.o: receiver.c receiver.h
$(CC) $(CFLAGS) -c receiver.c

misc.o: misc.c
$(CC) $(CFLAGS) -c misc.c

clean:
rm -f receiver receiver.o misc.o

We employed Makefiles in this project for their simplicity and ease of use, much
like we showed in 2.1.5.

3.3 Docker

In this project, both the receiver script and web interface are docker-based,
because as we explained in section 2.6, it allowed us to create a stable environment
that can be easily reproduced anywhere.

There are two Dockerfiles, one for the receiver and one for the web interface.
The receiver Dockerfile uses an Ubuntu image with the necessary packages. Then it
compiles the code using make and it runs the C code for the receiver:

FROM ubuntu:22.04

RUN apt-get update && apt-get install -y \
build-essential \
avr-1libc \
gcc-avr \
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make \

avrdude \

&& apt-get clean \

&& rm -rf /var/lib/apt/lists/*

WORKDIR /app
COPY . /app
RUN make

CMD ["./receiver/receiver"]

The Dockerfile for the web interface is much simpler, because it is built on top
of a Nginx image which gets the HTML files and hosts them on port 80:

FROM nginx:latest
COPY ./ /usr/share/nginx/html

EXPOSE 80

The docker-compose file builds the receiver and webpage services based on their
Dockerfiles. It also assigns them volumes for permanent storage, ports for web
communication and passes through any device file needed:

services:
receiver:
build:
context: ./linux receiver
dockerfile: Dockerfile
container_name: receiver

devices:
- "/dev/ttyUSBO:/dev/ttyUSBO"
volumes:
- shared_data:/app/receiver/data
command: ["./receiver/receiver", "/dev/ttyUSB0O"]
stdin_open: true
tty: true
webpage:
build:
context: ./webpage

dockerfile: Dockerfile
container_name: webpage
ports:
- "5000:80"
volumes:
- ./webpage:/usr/share/nginx/html
- shared_data:/usr/share/nginx/html/data

volumes:
shared_data:
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We passed the appropriate device file (/dev/ttyUSB0) to the receiver container
to allow it to interact with the Arduino board. This allows the container to receive
data as if they were connected directly. We also had to force the receiver container
to have the standard input communication channel stdin open, so that it could
communicate with the Arduino board.

The shared_data volume is used to share the sensor data between the two
containers. Even though there are other ways to share data between containers like
Inter-Process Communication or HTTP communication, this was the easiest and in
some ways most reliable approach for our project.
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Chapter 4

Use cases

In this chapter, we demonstrate a complete run of the system, providing an
overview of the code execution and explaining how each component functions in
practice. The complete codebase of our project is on GitHub [16].

4.1 Boot up

There are two ways to boot the Linux side of the system. They both leverage
Makefiles to compile the C code, however the docker way also hosts a web interface
to show the data coming from the sensor.

1. terminal-based interface, which can be run using:

make
./receiver /dev/ttyUSBO

2. docker-based interface, which can be booted up through docker-compose 3.3:

docker -compose up -d

As for the Arduino side, the code for the meter needs to be flashed to the Arduino
board using Make and Avrdude:

make

4.2 Meter

When the Arduino board is powered on it automatically starts executing the
Meter program.

4.2.1 Setup

The first thing it does is setup various variables for UART communication, timers
and Interrupt Service Routines (ISR). We decided to use interrupts and ISRs instead
of polling since interrupt-driven code is more efficient than code that relies on polling.

As we explained in 2.1.3, the code in interrupt service routines must be simple
and efficient. To comply with this rule, in our code interrupt service routines are
only tasked with changing the value of a counter or a flag. The flags are used to
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indicate timer overflow, while counters are used to know how many measurements
have been taken.

//UART Global Variables
volatile uint8_t mode;
volatile uint8_t uart_flag = O;

//Timer Global Variables

volatile uint8_t online_flag = O;
volatile uint8_t timer_flag = O0;
volatile uintl16_t measurement_count = O0;
volatile uint8_t sensor_flag = O0;

ISR(TIMER1_COMPA_vect) { //1000hz timer for sampling
sensor_flag = 1;

}

ISR(TIMER3_COMPA_vect) { //l1sec timer
timer_flag = 1;
measurement_count++;

}

ISR(TIMER5_COMPA _vect) { //wvariable timer for online mode
online_flag = 1;
measurement_count++;

}

ISR(USARTO_RX_vect) { //interrupt when pc sends data
uart_flag = 1;
mode = UDRO; //read byte from UART representing MODE

Then we initialize various utilities like the UART function for communication,
the analog to digital converter and the sampling timer responsible for sampling the
signal:

UART_init () ;
adc_init () ;
sampling_timer_init () ;

The function to initialize the analog to digital converter sets the V,.; to our
desired value, which as we explained in 2.1.4 is fundamental since the ADC would
not work correctly without doing this:

void adc_init(void) {
// Select Vref=AVcc
ADMUX |= (1 << REFSO0);
ADMUX &= ~(1 << REFS1);

// Set ADC prescaler to 128 for 16 MHz clock (125 kHz ADC
clock)
ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);

// Enable ADC
ADCSRA |= (1 << ADEN);
}

The timer is initialized with a sampling frequency of 1000Hz, for reasons we
explained in 2.5.1. After this, system interrupts are enabled and we also initialize
the arrays were the current measurements will be stored:
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void sampling_timer_init(void){
TCCR1A = 0;
TCCR1B = (1 << WGM12) | (1 << CS11) | (1 << CS10); // set
up timer with prescaler = 1024
uint16_t ocrval = (uinti16_t) (15.625); //1000Hz
OCR1A = ocrval;

TIMSK1 |= (1 << OCIE1A); // enable timer interrupt

Now the program measures the current and then stores this data. Afterwards it
goes into sleep while waiting either for user input coming from the receiver on the
Linux side or for the next current measurement:

while (1) {
if (uart_flag){ // received data from linuz

}

else{ // did not receive data

sleep_cpu();

4.2.2 Sensor data interpretation

When the Arduino does not receive data from Linux it measures the current
every second. We initialize a timer that changes the value of a flag every second (line
2). Then we measure the value coming from the sensor every 1000Hz (line 7), then
this value is ran through a simple algorithm to save the minimum and maximum
values over a 1 second interval (lines 7-16). Then when the 1 second interval ends,
those maximum and minimum values are used to compute the current (line 18) and
save it in an amp_value struct. Then the min and max values are reset (lines 26-28):

else{ // did mot receive data
detached_mode_timer_init () ;
float max_val = 0;
float min_val
float new_val
while (uart_flag
if (sensor_flag){ //measuring every 1000hz

’

]
I © O

I| -

0){ //serial mnot comnected

new_val = adc_read();

if (new_val > max_val) { //get maz wvalue
max_val = new_val;

}

if (new_val < min_val || min_val == 0) { //get min walue
min_val = new_val,;

}

sensor_flag = 0; //reset flag

}
if (timer_flag){
float current

calculate_current (min_val,

amp_value amp {0, 0};
amp.current = current;
amp.timestamp = measurement_count;

max_val) ;
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update_time_arrays (amp, last_seconds, last_minutes,
last_hours, last_days, last_months);

max_val = 0;
min_val = O;
timer_flag = 0;

}
sleep_cpu();

The function used to compute the current is a relatively simple one. It uses the
Vier (5) and the ADC resolution of the sensor (1024) to get an averaged value that
is then used to calculate the RMS of the signal. We used the RMS for reasons that
were explained in 2.5.2. After that, we compute the final value using some constants
that we obtained through least square regression in 4.2.3. Finally we run it through
a simple check (lines 5-7) to account for the sensor’s sensitivity.

float calculate_current (float min_val, float max_val){
float sample = ((max_val - min_val)=*5)/1024;
sample = sample * 0.707;
float calibrated_sample = sample * CALIBRATION1 +
CALIBRATION2;
if (calibrated_sample < 0.03) {
calibrated_sample = O0;
¥

return calibrated_sample;

4.2.3 Least Squares Regression

Since the datasheet of the sensor used in this project does not include a calibration
constant, we have to compute it ourselves. It is needed to make the readings
as accurate as possible. To compute the calibration constants CALIBRATION1 and
CALIBRATION2, we gathered data coming from the sensor while we measured the real
value using a multimeter. Those values are then stored in the numpy arrays. Then
we used the linear regression model from the sklearn module on our data, like we
explained in 2.5.3:

import numpy as np
from sklearn.linear_model import LinearRegression

# Sensor and real-life values

5 sensor_values = np.array([0.231, 0.255, 0.252, 0.269,

16

0.10, 0.007]) .reshape(-1, 1)

s real_values = np.array([0.11, 0.12, 0.12, 0.13, 0.00,

0.00])

#Create and fit the linear regression model
model = LinearRegression ()
model .fit (sensor_values, real_values)

#Get the parameters of the linear model
CALIBRATION1 model.coef [0]
CALIBRATION2 model .intercept_

print (CALIBRATION1 ,CALIBRATION2)
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4.3 Receiver

4.3.1 Setup

When the receiver on the Linux machine starts running, it sets up a signal
handler for SIGINT, which is a signal that is triggered when CTRL+C is pressed.
We used it because there might be errors while opening the file descriptor if a user
stopped the program with CTRL+C without this signal handler:

signal (SIGINT, signal_handler);
void signal_handler (int signum){
if (signum == SIGINT){
fprintf (stderr ,"Exiting program after CTRL+C \n");
close (fd) ;
fd = serial_open(serial_device);
close (£fd) ;
exit (EXIT_SUCCESS);

Then we get the name of the serial device file from terminal, we check it for
errors, then we initialize the serial connection between meter and receiver. We set
the serial to blocking, because it is more reliable in cases where the receiver or the
meter need to wait for data; it is also simpler to implement. The baudrate is set
to 19200, because even though higher speeds are fine they are not required for this
project. Using a lower baudrate also helps improve reliability, since it means that
the signal is slower so it is also more resistant to electrical noise and interference. It
also results in reduced distortion and simpler error handling:

serial_device = argv([1];

fd = serial_open(serial_device);
serial_set_interface_attribs (fd, BAUDRATE, O0);
serial_set_blocking(fd, blocking_status);

Where:

int serial_open(const char* name) {
int fd = open (name, O_RDWR | O_NOCTTY | O_SYNC );
if (fd < 0) {
printf ("error %d opening serial, fd %d\n", errmno,
fd);
}

return fd;

In the serial_set_interface_attribs function, we initialize a termios struct,
then we choose the baudrate and we set it. Then we set flags to enable reading, shut
off parity and specify that we use 8-bit chars. Afterwards we check for errors and
we clear the input and output buffers. This is a critical step because without it the
buffers may contain some data from previous connections, meaning that the serial
connection will not work.

int serial_set_interface_attribs(int fd, int speed, int
parity) {
struct termios tty;
memset (&tty, O, sizeof tty);
if (tcgetattr (fd, &tty) != 0) {
printf ("error %d from tcgetattr", errno);
return -1;

}
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switch (speed){

}

cfsetospeed (&tty, speed);
cfsetispeed (&tty, speed);
cfmakeraw (&tty) ;

tty.c_cflag &= ~(PARENB | PARODD);
tty.c_cflag |= parity;
tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8;

if (tcsetattr (fd, TCSANOW, &tty) != 0) {
}
if (tcflush(fd, TCIOFLUSH) != 0) {

perror ("tcflush");
return -1;

}

return O;

3

Then the user gets asked to choose one of three possible modes:

e online mode, where the user chooses how many seconds will pass between each
sample.

e query mode, where the user can see the overall statistics.

e cleaning mode, where the user deletes all the statistics.

Type o for online mode q for guery mode, ¢ for clearing mode: [j

Figure 4.1. Choose mode

After the user has chosen, the receiver sends a special message to the meter containing
the chosen mode. This is done using a simple write on the device file representing
the Arduino. We also included a simple error check to spot if there is a problem
with the UART connection:

void UART_send_special_message (int fd, char msg) {
ssize_t bytes_written = write(fd, &msg, sizeof (char));
if (bytes_written < 0) {
printf ("Error writing to serial port\n");
return;

4.3.2 Online mode

The user gets asked for the sampling interval, which fits into a single byte since
it can only go up to 60. Then the receiver waits for data coming from the meter in
the form of an amp_value struct, reads it through a simple read on the device file
and finally it gets printed on the interface:
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amp_value UART_read_amp (int £d) {
int bytes_read = 0;
int total_bytes_read = O0;
amp_value amp = {0, 0};

bytes_read = read(fd, &amp, sizeof (amp_value));
if (bytes_read == sizeof (amp_value)) {
total_bytes_read += bytes_read;

}
else {
perror ("read") ;
printf ("Expected to read %lu bytes, but got %d
bytes\n", sizeof (amp_value), bytes_read) ;
}

return amp;

The data is interpreted the same way as it was in 4.2.2, with the only difference
being that the interval of time between measurements is set by the user so it is not
necessarily equal to 1 second. Here is an example:

time
time
time
time
time

current

3
a4
5
6

564mA
556mA

i oo L
[

I ]

3
3
3
3
3

P

current

Figure 4.2. Online mode output



4.3 Receiver 31

4.3.3 Query and Clearing mode

When the user chooses query mode, the terminal shows various statistics on the
current that was measured in the last hour, last day, last month and last year. If
the user chooses clearing mode, the arrays containing those statistics are deleted:

| emaA

| emA

Figure 4.3. Query mode output Figure 4.4. Clearing mode output
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4.4 Docker and Website

There is a web-based way to check out the data coming from the Arduino board
through a web interface, available at localhost:5000 :

Arduino Current Meter

e

stem with Arduino and Hall Effect Sensor

Current Reading (mA)

195

Figure 4.5. Website interface

The website has a simple interface. It uses a JavaScript function to read the file
where the measurements are written. This file (data.txt) resides in a shared volume
called shared_data 2.6. The volume is accessible to both the receiver and webpage

1

Y ol A W N

containers, which grants both of them read/write privileges on its contents.

async function fetchLastValue () {

try {
const response = await fetch(’/data/data.txt’);
const data = await response.text();

// Split by newlines and get the

last mon-empty line

const lines = data.trim().split(’\n’);
const lastValue = lines[lines.length - 1];

// Display the last wvalue
document .getElementById(’data-container’).textContent =

lastValue;
} catch (error) {

console.error (’Error fetching the last value:’, error);

}
3

// Update the last wvalue every second

setInterval (fetchLastValue,

1000) ;
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Chapter 5

Conclusions

In this project, we set out to develop a low-cost, easy-to-build current monitor-
ing system using an Arduino microcontroller, a Hall effect current sensor, and a
Linux computer. Our goal was to provide a solution that is adaptable, efficient and
accessible for various applications. Through the integration of these components,
we successfully demonstrated a system capable of precise and real-time current
measurement.

By leveraging the Hall effect sensor, we showed how non-intrusive and accurate
current monitoring can be achieved without the complexity and cost associated with
traditional methods. The use of the Arduino provided a flexible and user-friendly
platform for handling sensor data and transmitting it to the Linux computer. The
Linux computer, in turn, served as an essential tool for programming the Arduino,
debugging the system, and displaying the current readings in real time. Docker is
another helpful tool that played a vital role in this project.

FEach step of the design and implementation was thoroughly detailed, fulfilling
our commitment to explaining both the how and the why behind the system’s
components and operation. We also highlighted the underlying principles from
physics, electronics, and signal theory that influenced our choices.

In conclusion, we have successfully built a reliable and straightforward current
monitoring system that fulfills the objectives outlined in the introduction. Our
system offers a practical, low-cost alternative for current measurement that can be
easily replicated and adapted for a wide range of applications, ensuring both safety
and efficiency in electrical monitoring.
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